Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Yukmijihwang-tang inhibits receptor activator for nuclear Factor-κB ligand-induced osteoclast differentiation.

Yukmijihwang-tang (YMT) is a traditional herbal medicine known to enhance memory in brain injury models. The aims of this study were to evaluate the inhibitory effect of YMT on osteoclast differentiation and to determine its molecular mechanism of action. YMT dose-dependently inhibited receptor activator for nuclear factor-κB (NF-κB) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity and the formation of multinucleated osteoclasts in RAW264.7 cells. In addition, quantitative reverse transcription-polymerase chain reaction showed that YMT significantly decreased RANKL-induced expression of osteoclast differentiation-specific genes (TRAP, matrix metalloproteinase-9, cathepsin K, and the d2 isoform of vacuolar ATPase V(0) domain). Furthermore, YMT inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38), phosphorylation of I-κBα, phosphorylation of NF-κB p65, and the expression of transcription factors Fra-2 and nuclear factor of activated T-cells, cytoplasmic 1. Furthermore, YMT inhibited the bone-resorptive activity of differentiated osteoclasts, suggesting that YMT inhibits osteoclast differentiation by suppressing RANKL-induced signaling molecules and transcription factors that affect the regulation of genes for osteoclast differentiation. As such, YMT may have therapeutic potential in bone diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app