Add like
Add dislike
Add to saved papers

Signatures of spin-glass behaviour in PrIr2B2 and heavy fermion behaviour in PrIr2B2C.

The magnetic and transport properties of PrIr(2)B(2) and PrIr(2)B(2)C have been investigated by dc and ac magnetic susceptibility, specific heat, electrical resistivity and magnetoresistance measurements. PrIr(2)B(2) forms in CaRh(2)B(2)-type orthorhombic crystal structure (space group Fddd). At low fields the dc magnetic susceptibility of PrIr(2)B(2) exhibits a sharp anomaly near 46 K which is followed by an abrupt increase below 10 K with a peak at 6 K, and split-up in ZFC and FC data below 46 K. In contrast, the specific heat exhibits only a broad Schottky type hump near 9 K which indicates that there is no long range magnetic order in this compound. The thermo-remanent magnetization is found to decay very slowly with a mean relaxation time τ = 3917 s. An ac magnetic susceptibility measurement also observes two sharp anomalies; the peak positions strongly depend on the frequency and shift towards high temperature with an increase in frequency, obeying the Vogel-Fulcher law as expected for a canonical spin-glass system. The two spin-glass transitions occur at freezing temperatures T(f1) = 36 K and T(f2) = 3.5 K with shifts in the freezing temperatures per decade of frequency δT(f1) = 0.044 and δT(f2) = 0.09. An analysis of the frequency dependence of the transition temperature with critical slowing down, τ(max)/τ(0) = [(T(f)-T(SG))/T(SG)](-zν), gives τ(0) = 10(-7) s and exponent zν = 8, and the Vogel-Fulcher law gives an activation energy of 84 K for T(f1) and 27.5 K for T(f2). While zν = 8 is typical for spin-glass system, the characteristic relaxation time τ(0) = 10(-7) s is very large and comparable to that of superspin-glass systems. An addition of C in PrIr(2)B(2) leads to PrIr(2)B(2)C which forms in LuNi(2)B(2)C-type tetragonal structure (space group I4/mmm) and remains paramagnetic down to 2 K. The specific heat data show a broad Schottky type anomaly, which could be fairly reproduced with CEF analysis which suggests that the ground state is a CEF-split singlet and the first excited state singlet is situated 15 K above the ground state. The Sommerfeld coefficient γ∼300 mJ mol(-1) K(-2) of PrIr(2)B(2)C is very high and reflects a heavy fermion behaviour in this compound. We believe that the heavy fermion state in PrIr(2)B(2)C has its origin in low lying crystal field excitations as has been observed in PrRh(2)B(2)C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app