Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma.

In our in-depth analysis carried out by the Illumina Solexa massive parallel signature sequencing, microRNA-99a (miR-99a) was found to be the sixth abundant microRNA in the miRNome of normal human liver but was markedly down-regulated in hepatocellular carcinoma (HCC). Compelling evidence has suggested the important roles of microRNAs in HCC development. However, the biological function of miR-99a deregulation in HCC remains unknown. In this study, we found that miR-99a was remarkably decreased in HCC tissues and cell lines. Importantly, lower miR-99a expression in HCC tissues significantly correlated with shorter survival of HCC patients, and miR-99a was identified to be an independent predictor for the prognosis of HCC patients. Furthermore, restoration of miR-99a dramatically suppressed HCC cell growth in vitro by inducing the G(1) phase cell cycle arrest. Intratumoral injection of cholesterol-conjugated miR-99a mimics significantly inhibited tumor growth and reduced the α-fetoprotein level in HCC-bearing nude mice. Insulin-like growth factor 1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) were further characterized as the direct targets of miR-99a. Furthermore, protein levels of IGF-1R and mTOR were found to be inversely correlated with miR-99a expression in HCC tissues. miR-99a mimics inhibited IGF-1R and mTOR pathways and subsequently suppressed expression of cell cycle-related proteins, including cyclin D1 in HCC cells. Conclusively, miR-99a expression was frequently down-regulated in HCC tissues and correlates with the prognosis of HCC patients, thus proposing miR-99a as a prospective prognosis predictor of HCC. miR-99a suppresses HCC growth by inducing cell cycle arrest, suggesting miR-99a as potential tumor suppressor for HCC therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app