Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanical stress affects glucagon fibrillation kinetics and fibril structure.

Mechanical stress can strongly influence the capability of a protein to aggregate and the kinetics of aggregation, but there is little insight into the underlying mechanism. Here we study the effect of different mechanical stress conditions on the fibrillation of the peptide hormone glucagon, which forms different fibrils depending on temperature, pH, ionic strength, and concentration. A combination of spectroscopic and microscopic data shows that fibrillar polymorphism can also be induced by mechanical stress. We observed two classes of fibrils: a low-stress and a high-stress class, which differ in their kinetic profiles, secondary structure as well as morphology and that are able to self-propagate in a template-dependent fashion. The bending rigidity of the low-stress fibrils is sensitive to the degree of mechanical perturbation. We propose a fibrillation model, where interfaces play a fundamental role in the switch between the two fibrillar classes. Our work also raises the cautionary note that mechanical perturbation is a potential source of variability in the study of fibrillation mechanisms and fibril structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app