Add like
Add dislike
Add to saved papers

Promoter hypermethylation of DNA damage response genes in hepatocellular carcinoma.

Aberrant methylation of promoter CpG islands is a major inactivation mechanism of tumour-related genes that play a crucial role in the progression of silencing in human cancers, including HCC (hepatocellular carcinoma). We have examined the promoter methylation status of five important DNA damage response genes in fresh-frozen HCC tissues and cell lines, as well as the possible correlation between methylation patterns and clinical features of the carcinoma. Promoter methylation status of RASSF1A (Ras association domain family 1), CHFR (checkpoint with forkhead and ring finger domains), GSTP1 (glutathione-S-transferase-pi gene), MGMT [O(6)-methylguanine-DNA methyltransferase] and hMLH1 (human mutL homologue 1) were examined by the MSP (methylation-specific PCR) in 70 HCC tissues and five HCC cell lines. The mRNA expression levels of these genes were measured by RT-PCR (reverse transcription-PCR). Methylation frequencies of these genes tested in HCC were 54 (78%) for RASSF1A, 30 (43%) for CHFR, 26 (38%) for GSTP1 and 22 (32%) for MGMT. No hypermethylation was detected for hMLH1 in any case of HCC or HCC cell lines. Moreover, promoter hypermethylation of RASSF1A, CHFR and GSTP1 in both HepG2 and SNU398 cells, and hypermethylation of MGMT in Huh7 cells, were detected. Treatment of three cell lines with 5Aza-dC (5-aza-20-deoxycytidine) restored or increased the expression of these genes, implicating aberrant DNA methylation in transcriptional silencing. Hypermethylation of RASSF1A and patient age were significantly associated. CHFR methylation status showed a statistically significant correlation with HCC progression. Methylation of the RASSF1A, CHFR, GSTP1 and MGMT genes seem therefore to play an important role in the pathogenesis of HCC. These epigenetic changes may have prognostic importance for patients with HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app