JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impact of JNK1, JNK2, and ligase Itch on reactive oxygen species formation and survival of prostate cancer cells treated with diallyl trisulfide.

PURPOSE: In our previous study, we demonstrated that diallyl trisulfide (DATS) induced iron-dependent G2-M arrest of prostate cancer cell cycle. Moreover, ferritin degradation and an increase of labile iron pool has been linked to the activation of the JNK signaling axis. In the present work, we extended this study to determine which of the c-jun kinases is responsible for ferritin degradation and the role of iron in DATS-induced cell death. We hypothesized that JNK1 activates Itch ligase which will lead to ferritin ubiquitination, an increase in iron-dependent ROS formation and cell death.

METHODS: PC-3 prostate cancer cells were used in this study. Cell viability, concentration of ROS, labile iron pool, and changes in ferritin and P-Itch and DNA damage were determined.

RESULTS: We observed that DATS induced ferritin degradation through JNK, Itch signaling axis. DATS did not induce neither ROS formation nor increase the LIP in JNK1-DN transfected cells. We also observed that DATS increased JNK-dependent activating phosphorylation of E3ligase Itch. The cells transfected with inactive form of Itch were more resistant against cytotoxicity of DATS and showed lower DATS-induced ferritin degradation. Desferrioxamine a specific iron chelator had no effect neither on cell viability nor DNA damage evaluated by comet assay.

CONCLUSIONS: These results suggest that JNK1-dependent increase in LIP is mediated by Itch ubiquitin ligase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app