JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Salinity increases mobility of heavy metals in soils.

Chemosphere 2011 November
The effect of salinity induced by CaCl(2), MgCl(2), NaCl and Na(2)SO(4) on the mobility of Cu, Cd, Pb and Zn was studied. An increase of ionic strength by any salts promoted a higher release of Cd than the others metals. When CaCl(2) and NaCl were applied, Cd and Pb showed the highest degree of mobilization. When MgCl(2) was applied, Cd and Cu were mobilized the most. Finally, an increase of Na(2)SO(4) also promoted the strongest mobilization of Cd and Cu. As the total heavy metal content was higher, the percentage of Pb and Cu released upon salinization decreased, indicating that these metals are strongly bound to soil constituents. An increase of carbonates in the soil promoted a higher release of Pb for all used salts and for Zn when MgCl(2) and NaCl were used. This indicates that Pb and Zn are adsorbed on the surface of carbonate crystals. An increase of fine particles promoted a decrease of percentage of released Cd for all salts, indicating that Cd is strongly retained in the fine fractions. The main mechanism regulating Pb and Cd mobility was competition with Ca(2+) for sorption sites followed for metal chloro-complexation, association between the Cd/Pb-sulfates and competition with Mg(2+). The main mechanism regulating Cu mobility was the formation of Cu-sulfate, followed by competition with cations (Mg > Ca) and chloride. For Zn, competition with Ca(2+) for sorption sites was the most important process for its mobility; followed by Zn-sulfate association and, finally, chloride and competition with Mg with the same effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app