JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modelling genetic and clinical heterogeneity in epithelial ovarian cancers.

Carcinogenesis 2011 October
The biology underlying early-stage epithelial ovarian cancer (EOC) development is poorly understood. Identifying biomarkers associated with early-stage disease could have a significant impact on reducing mortality. Here, we describe establishment of a three-dimensional (3D) in vitro genetic model of EOC initiation and early-stage neoplastic progression. Normal primary ovarian epithelial (POE) cells, immortalized using hTERT (immortalised ovarian epithelial [IOE] cells), were partially transformed by overexpressing the CMYC oncogene (IOE(CMYC) cells). Subsequent expression of mutant alleles of KRAS (KRAS(G12V)) or BRAF (BRAF(V600E)) created double-mutant lines (IOE(CMYC.KRAS) and IOE(CMYC.BRAF)). The transformed phenotype of IOE(CMYC) cells was further enhanced in concert with KRAS(G12V)/BRAF(V600E) expression, as in vitro analyses indicated that IOE(CMYC) cells had undergone morphological and phenotypic changes characteristic of neoplastic progression. When cultured as 3D spheroids, IOE cells underwent growth arrest, reminiscent of nonproliferative, unstimulated POE in vivo. In contrast, IOSE(CMYC+BRAF/KRAS) cells formed highly proliferative, poly-aggregate spheroid structures, showing increased expression of the Wilms tumour 1 tumourigenic marker and MIB1 proliferation marker. Transcriptomic analyses identified different gene expression profiles between the different cell lines and novel candidate genes (e.g. RGS4, CTGF and THBS1) that are somatically altered in EOCs. Gene expression signatures were compared with signatures from primary EOCs; tumours with IOE(CMYC) 'like' signatures were more likely to be high grade (P = 0.018); tumours with BRAF signatures were associated with improved relapse-free survival (P = 0.003). In conclusion, we have established in vitro 3D models of early-stage EOCs, which reflect genetic and phenotypic heterogeneity of the disease. Molecular genetic characteristics of these models correlated with molecular and clinical features of primary EOCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app