JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Introduction to spin-polarized ballistic hot electron injection and detection in silicon.

Ballistic hot electron transport overcomes the well-known problems of conductivity and spin lifetime mismatch that plague spin injection attempts in semiconductors using ferromagnetic ohmic contacts. Through the spin dependence of the mean free path in ferromagnetic thin films, it also provides a means for spin detection after transport. Experimental results using these techniques (consisting of spin precession and spin-valve measurements) with silicon-based devices reveals the exceptionally long spin lifetime and high spin coherence induced by drift-dominated transport in the semiconductor. An appropriate quantitative model that accurately simulates the device characteristics for both undoped and doped spin transport channels is described; it can be used to recover the transit-time distribution from precession measurements and determine the spin current velocity, diffusion constant and spin lifetime, constituting a spin 'Haynes-Shockley' experiment without time-of-flight techniques. A perspective on the future of these methods is offered as a summary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app