Absorption and emission spectra of fluorescent silica nanoparticles from TD-DFT/MM/PCM calculations

Alfonso Pedone, Giacomo Prampolini, Susanna Monti, Vincenzo Barone
Physical Chemistry Chemical Physics: PCCP 2011 October 6, 13 (37): 16689-97
A multi-scale computational protocol, which combines Quantum Mechanics and Molecular Mechanics (QM/MM) calculations with the polarisable continuum model (PCM), has been used to study the tetramethylrhodamine isothiocyanate (TRITC) fluorophore, embedded in three different environments, namely in water, on an amorphous silica surface and covalently encapsulated in a silica nanoparticle (C dot). Absorption and emission spectra have been simulated by using TD-B3LYP/PCM calculations, performed on the TRITC ground and excited state geometries, optimized at the QM/MM level. The results are in good agreement with experimental data confirming the caging effect played by the silica shell on the mobility of the TRITC molecule when covalently encapsulated in silica nanoparticles. This could result in a decrease of the nonradiative decay rate and thus an increase of the quantum yield of the molecule.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"