JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Absorption and emission spectra of fluorescent silica nanoparticles from TD-DFT/MM/PCM calculations.

A multi-scale computational protocol, which combines Quantum Mechanics and Molecular Mechanics (QM/MM) calculations with the polarisable continuum model (PCM), has been used to study the tetramethylrhodamine isothiocyanate (TRITC) fluorophore, embedded in three different environments, namely in water, on an amorphous silica surface and covalently encapsulated in a silica nanoparticle (C dot). Absorption and emission spectra have been simulated by using TD-B3LYP/PCM calculations, performed on the TRITC ground and excited state geometries, optimized at the QM/MM level. The results are in good agreement with experimental data confirming the caging effect played by the silica shell on the mobility of the TRITC molecule when covalently encapsulated in silica nanoparticles. This could result in a decrease of the nonradiative decay rate and thus an increase of the quantum yield of the molecule.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app