Contribution of nitric oxide synthase (NOS) in blood-brain barrier disruption during acute focal cerebral ischemia in normal rat

Mohammad T Mohammadi, S Mostafa Shid-Moosavi, Gholam A Dehghani
Pathophysiology: the Official Journal of the International Society for Pathophysiology 2012, 19 (1): 13-20
Endogenous level of nitric oxide (NO) is increased in the brain following the stroke, and deactivation of NO synthase has been shown to attenuate its destructive actions in animal stroke models using middle cerebral artery occlusion (MCAO) procedures. However, little is known about the effects of NO in cerebral vascular integrity and edema during acute cerebral ischemia. Here we investigated whether NO plays any role in the progression of blood-brain barrier (BBB) disruption and edema formation in ischemia/reperfusion injury. Intraperitoneal administration of NO substrate l-arginine (300mg/kg), or NOS inhibitor (l-NAME, 1mg/kg), was done in normal rats at 20min before a 60-min MCAO. Mean arterial blood pressures (MAP) and regional cerebral blood flow (rCBF) were continuously recorded during experiment. Neurological deficit score (NDS) was evaluated 12h after termination of MCAO followed with evaluations of cerebral infarction volume (CIV), edema formation and cerebral vascular permeability (CVP), as determined by the Evans blue dye extravasations (EBE) technique. No significant changes were observed in the values of MAP and rCBF with l-arginine or l-NAME during ischemia or reperfusion periods. There was a 75-85% reduction in rCBF in during MCAO which returned back to its pre-occlusion level during reperfusion. Acute cerebral ischemia with or without l-arginine augmented NDS (4.00±0.44 and 3.00±0.30), in conjunction with increased CIV (518±57mm(3) and 461±65mm(3)), provoked edema (3.09±0.45% and 3.30±0.49%), and elevated EBE (8.28±2.04μg/g and 5.09±1.41μg/g). Inhibition of NO production by l-NAME significantly improved NDS (1.50±0.22), diminished CIV (248±56mm(3)), edema (1.18±0.58%) and EBE (1.37±0.12μg/g). This study reconfirms the cerebroprotective properties of reduced tissue NO during acute ischemic stroke, and it also validates the deleterious actions of increased NOS activity on the disruption of cerebral microvascular integrity and edema formation of ischemia/reperfusion injuries in normal rat, without changing arterial blood pressure or blood flows to ischemic regions.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"