Add like
Add dislike
Add to saved papers

Gap surface plasmon polaritons enhanced by a plasmonic lens.

Optics Letters 2011 August 16
We numerically investigate the optical field enhancement based on gap surface plasmon polaritons (GSPPs) that are enhanced by propagating surface waves launched by a circular slit at a metal-dielectric interface. The optical field enhancement originates not only from multiple scattering and coupling of GSPPs in the spacer region between two metal layers but also from propagating surface plasmon polaritons (SPPs) launched by a circular plasmonic lens. We find that the combination of the GSPPs and the propagating SPPs launched by the plasmonic lens can achieve extremely strong field confinement, and we find that the surface-enhanced Raman scattering (SERS) enhancement factor can be up to 10(15) at the tip of the equilateral triangular nanostructures. The structure proposed here is expected to find promising applications where strong field enhancement is desired, such as optical sensing with the SERS effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app