JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Mitochondria and autophagy: critical interplay between the two homeostats.

BACKGROUND: Mitochondria are dynamic organelles that frequently change their number, size, shape, and distribution in response to intra- and extracellular cues. After proliferated from pre-existing ones, fresh mitochondria enter constant cycles of fission and fusion that organize them into two distinct states - "individual state" and "network state". When compromised with various injuries, solitary mitochondria are subjected to organelle degradation. This clearance pathway relies on autophagy, a self-eating process that plays key roles in manifold cell activities. Recent studies reveal that defects in autophagic degradation selective for mitochondria (mitophagy) are associated with neurodegenerative diseases, highlighting the physiological relevance to cellular functions.

SCOPE OF REVIEW: Here we review recent progress regarding a link between mitochondria and autophagy in yeast and multicellular eukaryotes. In particular, fundamental principles underlying mitophagy, and mitochondrial quality control are emphasized. Accumulating evidence also implicates nonselective autophagy in the management of mitochondrial fitness. Conversely, mitochondria are suggested to serve as signaling platforms vital for regulating autophagy. These interdependent relationships are likely to coordinate metabolic plasticity in the cell.

MAJOR CONCLUSIONS: Mitochondria and autophagy are elaborately linked homeostatic elements that act in response to changes in cellular environment such as energy, nutrient, and stress. How cells integrate these double membrane-bound systems still remains elusive.

GENERAL SIGNIFICANCE: Interplay between mitochondria and autophagy seems to be evolutionarily conserved. Defects in one of these elements could simultaneously impair the other, resulting in risk increments for various human diseases. This article is part of a Special Issue entitled Biochemistry of Mitochondria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app