Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nifedipine affects the course of Salmonella enterica serovar Typhimurium infection by modulating macrophage iron homeostasis.

BACKGROUND: Iron overload can adversely influence the course of infection by increasing microbial replication and suppressing antimicrobial immune effector pathways. Recently, we have shown that the calcium channel blocker nifedipine can mobilize tissue iron in mouse models of iron overload. We therefore investigated whether nifedipine treatment affects the course of infection with intracellular bacteria via modulation of iron homeostasis.

METHODS: The effect of nifedipine on intramacrophage replication of bacteria and modulation of cellular iron homeostasis was investigated in the murine macrophage cell line RAW264.7, and the impact of nifedipine treatment on the course of systemic infection was investigated in C57BL/6 mice in vivo.

RESULTS: In RAW264.7 cells, nifedipine treatment significantly reduced intracellular bacterial survival of Salmonella enterica serovar Typhimurium and Chlamydophila pneumoniae. This could be attributed to the induction of the iron exporter ferroportin 1, which limited the availability of iron for intracellular Salmonella. When C57BL/6 mice were infected intraperitoneally with Salmonella and subsequently injected with nifedipine for 3 consecutive days, bacterial counts in livers and spleens were significantly reduced and survival of the mice significantly was prolonged compared with solvent-treated littermates. Nifedipine treatment increased expression of ferroportin 1 in the spleen, whereas splenic levels of the iron storage protein ferritin and serum iron concentrations were reduced.

CONCLUSIONS: Our data provide evidence for a novel mechanism whereby nifedipine enhances host resistance to intracellular pathogens via limitation of iron availability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app