Add like
Add dislike
Add to saved papers

Radiosynthesis and in vivo evaluation of [(11)C]MP-10 as a positron emission tomography radioligand for phosphodiesterase 10A.

INTRODUCTION: The aim of this study was to evaluate a newly reported positron emission tomography (PET) radioligand [(11)C]MP-10, a potent and selective inhibitor of the central phosphodiesterase 10A enzyme (PDE10A) in vivo, using PET.

METHODS: A procedure was developed for labeling MP-10 with carbon-11. [(11)C]MP-10 was evaluated in vivo both in the pig and baboon brain.

RESULTS: Alkylation of the corresponding desmethyl compound with [(11)C]methyl iodide produced [(11)C]MP-10 with good radiochemical yield and specific activity. PET studies in the pig showed that [(11)C]MP-10 rapidly entered the brain reaching peak tissue concentration at 1-2 min postadministration, followed by washout from the tissue. Administration of a selective PDE10A inhibitor reduced the binding in all brain regions to the levels of the cerebellum, demonstrating the saturability and selectivity of [(11)C]MP-10 binding. In the nonhuman primate, the brain tissue kinetics of [(11)C]MP-10 were slower, reaching peak tissue concentrations at 30-60 min postadministration. In both species, the observed rank order of regional brain signal was striatum>diencephalon>cortical regions=cerebellum, consistent with the known distribution and concentration of PDE10A. [(11)C]MP-10 brain kinetics were well described by a two-tissue compartment model, and estimates of total volume of distribution (V(T)) were obtained. Blocking studies with unlabeled MP-10 revealed the suitability of the cerebellum as a reference tissue and enabled the estimation of regional binding potential (BP(ND)) as the outcome measure of specific binding. Quantification of [(11)C]MP-10 binding using the simplified reference tissue model with cerebellar input function produced BP(ND) estimates consistent with those obtained by the two-tissue compartment model.

CONCLUSION: We demonstrated that [(11)C]MP-10 possesses good characteristics for the in vivo quantification of the PDE10A in the brain by PET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app