Marginal mean weighting through stratification: a generalized method for evaluating multivalued and multiple treatments with nonexperimental data

Guanglei Hong
Psychological Methods 2012, 17 (1): 44-60
Propensity score matching and stratification enable researchers to make statistical adjustment for a large number of observed covariates in nonexperimental data. These methods have recently become popular in psychological research. Yet their applications to evaluations of multi-valued and multiple treatments are limited. The inverse-probability-of-treatment weighting method, though suitable for evaluating multi-valued and multiple treatments, often generates results that are not robust when only a portion of the population provides support for causal inference or when the functional form of the propensity score model is misspecified. The marginal mean weighting through stratification (MMW-S) method promises a viable nonparametric solution to these problems. By computing weights on the basis of stratified propensity scores, MMW-S adjustment equates the pretreatment composition of multiple treatment groups under the assumption that unmeasured covariates do not confound the treatment effects given the observed covariates. Analyzing data from a weighted sample, researchers can estimate a causal effect by computing the difference between the estimated average potential outcomes associated with alternative treatments within the analysis of variance framework. After providing an intuitive illustration of the theoretical rationale underlying the weighting method for causal inferences, the article demonstrates how to apply the MMW-S method to evaluations of treatments measured on a binary, ordinal, or nominal scale approximating a completely randomized experiment; to studies of multiple concurrent treatments approximating factorial randomized designs; and to moderated treatment effects approximating randomized block designs. The analytic procedure is illustrated with an evaluation of educational services for English language learners attending kindergarten in the United States.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"