Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Epigenetic regulation of HIF-1α in renal cancer cells involves HIF-1α/2α binding to a reverse hypoxia-response element.

Oncogene 2012 Februrary 24
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene underlies the majority of sporadic clear cell renal cell carcinomas (CCRCCs) and is also responsible for the hereditary VHL cancer syndrome. VHL loss of function results in constitutive stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) due to insufficient proteolysis in the presence of oxygen. This activates multiple genes relevant to tumorigenesis, allowing cells to acquire further mutations and undergo malignant transformation. However, the specific role of each HIF-α subunit in CCRCC tumorigenesis is not yet well understood. The current paradigm supports that in the first stages of CCRCC formation the stabilization of HIF-1α is dominant and this limits proliferation, but later on HIF-2α increases and this induces a more aggressive cell behavior. Understanding how this transition happens is highly relevant, as it may provide novel ways to treat these cancers. Here, we show that VHL inactivation in CCRCC cells results in HIF-1α/2α-dependent downregulation of HIF-1α mRNA through direct binding of either subunit to a reverse hypoxia-response element in the HIF-1α proximal promoter. This binding activates a series of repressive histone modification marks including histone 3 lysine 27 trimethylation (H3K27me3) to make the changes stable, and if overturned reduces CCRCC cell proliferation due to excessive HIF-1α expression level. Our findings thus help understand how HIF-α subunits influence each other and also reinforce the idea that epigenetic mechanisms are a key step of CCRCC progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app