Long-term rescue of a familial hypertrophic cardiomyopathy caused by a mutation in the thin filament protein, tropomyosin, via modulation of a calcium cycling protein

Robert D Gaffin, James R Peña, Marco S L Alves, Fernando A L Dias, Shamim A K Chowdhury, Lynley S Heinrich, Paul H Goldspink, Evangelia G Kranias, David F Wieczorek, Beata M Wolska
Journal of Molecular and Cellular Cardiology 2011, 51 (5): 812-20
We have recently shown that a temporary increase in sarcoplasmic reticulum (SR) cycling via adenovirus-mediated overexpression of sarcoplasmic reticulum ATPase (SERCA2) transiently improves relaxation and delays hypertrophic remodeling in a familial hypertrophic cardiomyopathy (FHC) caused by a mutation in the thin filament protein, tropomyosin (i.e., α-TmE180G or Tm180). In this study, we sought to permanently alter calcium fluxes via phospholamban (PLN) gene deletion in Tm180 mice in order to sustain long-term improvements in cardiac function and adverse cardiac remodeling/hypertrophy. While similar work has been done in FHCs resulting from mutations in thick myofilament proteins, no one has studied these effects in an FHC resulting from a thin filament protein mutation. Tm180 transgenic (TG) mice were crossbred with PLN knockout (KO) mice and four groups were studied in parallel: 1) non-TG (NTG), 2) Tm180, 3) PLNKO/NTG and 4) PLNKO/Tm180. Tm180 mice exhibit increased heart weight/body weight and hypertrophic gene markers compared to NTG mice, but levels in PLNKO/Tm180 mice were similar to NTG. Tm180 mice also displayed altered function as assessed via in situ pressure-volume analysis and echocardiography at 3-6 months and one year; however, altered function in Tm180 mice was rescued back to NTG levels in PLNKO/Tm180 mice. Collagen deposition, as assessed by Picrosirius Red staining, was increased in Tm180 mice but was similar in NTG and in PLNKO/Tm180 mice. Extracellular signal-regulated kinase (ERK1/2) phosphorylation increased in Tm180 mice while levels in PLNKO/Tm180 mice were similar to NTGs. The present study shows that by modulating SR calcium cycling, we were able to rescue many of the deleterious aspects of FHC caused by a mutation in the thin filament protein, Tm.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"