JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhanced chondrogenic marker expression of human mesenchymal stem cells by interaction with both TGF-β3 and hyaluronic acid.

This study was designed to evaluate the additive effects of transforming growth factor-beta3 (TGF-β3) and hyaluronic acid (HA) on chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The hMSCs were cultured on collagen type I-, HA-, or fibronectin-coated cell culture dishes with or without TGF-β3 added to the culture medium. Four weeks after cell culture, chondrogenic differentiation of hMSCs was determined by evaluating the expression of cartilage-specific markers using real-time polymerase chain reaction, immunocytochemistry, and Western blot analysis. hMSCs cultured on HA-coated dishes with TGF-β3 supplementation revealed a prominent increase in collagen type II, aggrecan, and Sox9. When hMSCs were cultured without TGF-β3 supplementation, only hMSCs cultured on HA-coated dishes showed prominent expression of the cartilage-specific markers. This study shows that chondrogenic differentiation of hMSCs can be enhanced additively by interactions with both a specific cell-adhesion matrix and a soluble growth factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app