Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Speeding of VO2 kinetics during moderate-intensity exercise subsequent to heavy-intensity exercise is associated with improved local O2 distribution.

The relationship between the adjustment of muscle deoxygenation (Δ[HHb]) and phase II V(O(2p)) during moderate-intensity exercise was examined before (Mod 1) and after (Mod 2) a bout of heavy-intensity "priming" exercise. Moderate intensity V(O(2p)) and Δ[HHb] kinetics were determined in 18 young males (26 ± 3 yr). V(O(2p)) was measured breath-by-breath. Changes in Δ[HHb] of the vastus lateralis muscle were measured by near-infrared spectroscopy. V(O(2p)) and Δ[HHb] response profiles were fit using a monoexponential model, and scaled to a relative % of the response (0-100%). The Δ[HHb]/Vo(2) ratio for each individual (reflecting the local matching of O(2) delivery to O(2) utilization) was calculated as the average Δ[HHb]/Vo(2) response from 20 s to 120 s during the exercise on-transient. Phase II τV(O(2p)) was reduced in Mod 2 compared with Mod 1 (P < 0.05). The effective τ'Δ[HHb] remained the same in Mod 1 and Mod 2 (P > 0.05). During Mod 1, there was an "overshoot" in the Δ[HHb]/Vo(2) ratio (1.08; P < 0.05) that was not present during Mod 2 (1.01; P > 0.05). There was a positive correlation between the reduction in the Δ[HHb]/Vo(2) ratio and the smaller τV(O(2p)) from Mod 1 to Mod 2 (r = 0.78; P < 0.05). This study showed that a smaller τV(O(2p)) during a moderate bout of exercise subsequent to a heavy-intensity priming exercise was associated with improved microvascular O(2) delivery during the on-transient of exercise, as suggested by a smaller Δ[HHb]/Vo(2) ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app