JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of amyloid-β peptides on voltage-gated L-type Ca(V)1.2 and Ca(V)1.3 Ca(2+) channels.

Molecules and Cells 2011 September
Overload of intracellular Ca(2+) has been implicated in the pathogenesis of neuronal disorders, such as Alzheimer's disease. Various mechanisms produce abnormalities in intracellular Ca(2+) homeostasis systems. L-type Ca(2+) channels have been known to be closely involved in the mechanisms underlying the neurodegenerative properties of amyloid-β (Aβ) peptides. However, most studies of L-type Ca(2+) channels in Aβ-related mechanisms have been limited to Ca(V)1.2, and surprisingly little is known about the involvement of Ca(V)1.3 in Aβ-induced neuronal toxicity. In the present study, we examined the expression patterns of Ca(V)1.3 after Aβ(25-35) exposure for 24 h and compared them with the expression patterns of Ca(V)1.2. The expression levels of Ca(V)1.3 were not significantly changed by Aβ(25-35) at both the mRNA levels and the total protein level in cultured hippocampal neurons. However, surface protein levels of Ca(V)1.3 were significantly increased by Aβ(25-35), but not by Aβ(35-25). We next found that acute treatment with Aβ(25-35) increased Ca(V)1.3 channel activities in HEK293 cells using whole-cell patch-clamp recordings. Furthermore, using GTP pulldown and co-immunoprecipitation assays in HEK293 cell lysates, we found that amyloid precursor protein interacts with β(3) subunits of Ca(2+) channels instead of Ca(V)1.2 or Ca(V)1.3 α(1) subunits. These results show that Aβ(25-35) chronically or acutely upregulates Ca(V)1.3 in the rat hippocampal and human kidney cells (HEK293). This suggests that Ca(V)1.3 has a potential role along with Ca(V)1.2 in the pathogenesis of Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app