JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells.

Biomaterials 2011 November
Successful cell-based tissue engineering requires a rapid and thorough vascularization in order to ensure long-term implant survival and tissue integration. The vascularization of a scaffold is a complex process, and is modulated by the presence of transplanted cells, exogenous and endogenous signaling proteins, and the host tissue reaction, among other influencing factors. This paper presents evidence for the significance of pre-seeded osteoblasts for the in vivo vascularization of a biodegradable scaffold. Human osteoblasts, cultured on silk fibroin micronets in vitro, migrated throughout the interconnected pores of the scaffold and produced extensive bone matrix. When these constructs were implanted in SCID mice, a rapid and thorough vascularization of the scaffold by the host blood capillaries occurred. This profound response was not seen for the silk fibroin scaffold alone. Moreover, when the pre-cultivation time of human osteoblasts was reduced from 14 days to only 24 h, the significant effect these cells exerted on vascularization rate in vivo was still detectable. From these studies, we conclude that matrix and soluble factors produced by osteoblasts can serve to instruct host endothelial cells to migrate, proliferate, and initiate the process of scaffold vascularization. This finding represents a potential paradigm shift for the field of tissue engineering, especially in bone, as traditional strategies to enhance scaffold vascularization have focused on endovascular cells and regarded osteoblasts primarily as cell targets for mineralization. In addition, the migration of host macrophages and multinucleated giant cells into the scaffold was also found to influence the vascularization of the biomaterial. Therefore, the robust effect on scaffold vascularization seen by pre-culturing with osteoblasts appears to occur in concert with the pro-angiogenic stimuli arising from host immune cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app