JOURNAL ARTICLE

Power production enhancement with a polyaniline modified anode in microbial fuel cells

Bin Lai, Xinghua Tang, Haoran Li, Zhuwei Du, Xinwei Liu, Qian Zhang
Biosensors & Bioelectronics 2011 October 15, 28 (1): 373-7
21820889
In this paper, an approach of improving power generation of microbial fuel cells (MFCs) by using a HSO(4)(-) doped polyaniline modified carbon cloth anode was reported. The modification of carbon cloth anode was accomplished by electrochemical polymerization of aniline in 5% H(2)SO(4) solution. A dual-chamber MFC reactor with the modified anode achieved a maximum power density of 5.16 Wm(-3), an internal resistance of 90 Ω, and a start-up time of 4 days, which was respectively 2.66 times higher, 65.5% lower, and 33.3% shorter than the corresponding values of the MFC with unmodified anode. Evidence from X-ray photoelectron spectroscopy and scanning electron microscopy results proved that the formation of biofilm on the anode surface could prevent the HSO(4)(-) doped polyaniline to be de-doped, and the results from electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly after inoculation. Charge transfer was facilitated by polyaniline modification. All the results indicated that the polyaniline modification on the anode was an efficient approach of improving the performance of MFCs.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
21820889
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"