Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder.

The failure in the discovery of etiology of psychiatric diseases, despite extensive genetic studies, has directed the attention of neuroscientists to the contribution of epigenetic modulations, which play important roles in fine-tuning of gene expression in response to environmental factors. Previously, we analyzed 115 human post-mortem brain samples from the frontal lobe and reported DNA hypo methylation of the membrane-bound catechol-O-methyltransferase (MB-COMT) gene promoter, associated with an increased gene expression, as a risk factor for schizophrenia (SCZ) and bipolar disorder (BD). Since most epigenetic modifications are tissue specific and the availability of brain tissue to identify epigenetic aberrations in living subjects is limited, detection of epigenetic abnormalities in other tissues that represent the brain epigenetic marks is one of the critical steps to develop diagnostic and therapeutic biomarkers for mental diseases. Here, hypothesizing that; those factors that lead to the brain MB-COMT promoter DNA hypo-methylation may also cause concurrent epigenetic aberrations in peripheral tissues, we analyzed MB-COMT promoter methylation in DNA derived from the saliva in SCZ, BD and their first-degree relatives (20 cases each) as well as 25 control subjects. Using bisulfite DNA sequencing and quantitative methylation specific PCR (qMSP), we found that similar to the brain, MB-COMT promoter was hypo-methylated (∼50%) in DNA derived from the saliva in SCZ and BD compared to the control subjects (p = 0.02 and 0.037, respectively). These studies suggest that DNA methylation analysis of MB-COMT promoter in saliva can potentially be used as an available epigenetic biomarker for disease state in SCZ and BD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app