Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations.

Journal of Biotechnology 2011 September 21
A novel RNA-DNA hybridization microfluidic chip for detecting pathogens was developed. The on-chip sequential operations of reagent delivery and washing processes in the hybridization assay were performed by gravity-based pressure-driven flow controlled by a pair of electrokinetically controlled oil-droplet sequence valves (ECODSVs). Numerical method was used to simulate the fluidic processes of reagents in the complex microchannel network. Based on the parameters determined from the numerical simulations, a reasonable hybridization assay microfluidic chip was developed. The application of this on-chip assay to detect Salmonella was demonstrated. Significantly shortened assay time (25 min) and a 3-20-fold reduction in reagent/sample consumption were achieved. The detection limit was 10³ CFU/mL which is comparable to the conventional assay. With further development of automatic control and the improvement of the detection strategy, this microfluidic RNA-DNA hybridization assay technique has a potential for point-of-testing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app