JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A physiological concentration of glucocorticoid inhibits the pro-inflammatory cytokine-induced proliferation of adult rat cardiac fibroblasts: roles of extracellular signal-regulated kinase 1/2 and nuclear factor-κB.

1. Inflammation-induced proliferation of cardiac fibroblasts plays an important role in cardiac remodelling. Pharmacological doses of exogenous glucocorticoids (GC) are the most effective therapy for inflammatory diseases. Similarly, physiological concentrations of endogenous GC have recently been shown to have anti-inflammatory effects. Therefore, the aim of the present study was to determine whether a physiological concentration of GC could inhibit pro-inflammatory cytokine-stimulated proliferation of cardiac fibroblasts and to explore the mechanisms involved. 2. Cardiac fibroblasts were isolated from adult male Sprague-Dawley rats and cell proliferation was measured using a CCK-8 kit. Western blotting was used to detect protein expression of extracellular-regulated kinase (ERK) 1/2 and nuclear factor (NF)-κB. 3. Cardiac fibroblast proliferation was significantly increased by tumour necrosis factor-α, interleukin (IL)-1β and angiotensin II and was accompanied by upregulated protein expression of ERK1/2 and NF-κB. A physiological concentration of hydrocortisone (127 ng/mL) not only inhibited the proliferation of cardiac fibroblasts, but also suppressed activation of ERK1/2 and NF-κB. These effects of hydrocortisone were abrogated by the glucocorticoid receptor (GR) antagonist RU-486 (100 nmol/L). Furthermore, inflammation-induced cardiac fibroblast proliferation was also blocked by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 (100 nmol/L) and the NF-κB inhibitor pyrrolidine dithiocarbamate (1 μmol/L). Cytokine-induced ERK1/2 phosphorylation and cyclin D1 expression were attenuated by U0126, suggesting that the ERK1/2 and NF-κB signalling pathways were involved in cardiac fibroblast proliferation. 4. In conclusion, the results of the present study indicate that a physiological concentration of hydrocortisone can inhibit inflammation-induced proliferation of cardiac fibroblasts by preventing the activation of ERK1/2 and NF-κB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app