JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Exercise training increases mitochondrial biogenesis in the brain.

Increased muscle mitochondria are largely responsible for the increased resistance to fatigue and health benefits ascribed to exercise training. However, very little attention has been given to the likely benefits of increased brain mitochondria in this regard. We examined the effects of exercise training on markers of both brain and muscle mitochondrial biogenesis in relation to endurance capacity assessed by a treadmill run to fatigue (RTF) in mice. Male ICR mice were assigned to exercise (EX) or sedentary (SED) conditions (n = 16-19/group). EX mice performed 8 wk of treadmill running for 1 h/day, 6 days/wk at 25 m/min and a 5% incline. Twenty-four hours after the last training bout a subgroup of mice (n = 9-11/group) were euthanized, and brain (brain stem, cerebellum, cortex, frontal lobe, hippocampus, hypothalamus, and midbrain) and muscle (soleus) tissues were isolated for analysis of mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α), Silent Information Regulator T1 (SIRT1), citrate synthase (CS), and mitochondrial DNA (mtDNA) using RT-PCR. A different subgroup of EX and SED mice (n = 7-8/group) performed a treadmill RTF test. Exercise training increased PGC-1α, SIRT1, and CS mRNA and mtDNA in most brain regions in addition to the soleus (P < 0.05). Mean treadmill RTF increased from 74.0 ± 9.6 min to 126.5 ± 16.1 min following training (P < 0.05). These findings suggest that exercise training increases brain mitochondrial biogenesis, which may have important implications, not only with regard to fatigue, but also with respect to various central nervous system diseases and age-related dementia that are often characterized by mitochondrial dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app