JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Semaphorin 4D, a lymphocyte semaphorin, enhances tumor cell motility through binding its receptor, plexinB1, in pancreatic cancer.

Cancer Science 2011 November
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor, for which the development of new biomarkers and therapeutic targets has become critical. The main cause of poor prognosis in PDAC patients is the high invasive and metastatic potential of the cancer. In the present study, we report a new signaling pathway that was found to mediate the enhanced tumor cell motility in pancreatic cancer. Semaphorin 4D (Sema4D) is a ligand known to be expressed on different cell types, and has been reported to be involved in the regulation of immune functions, epithelial morphogenesis, and tumor growth and metastasis. In this study, we revealed for the first time that the cancer tissue cells expressing Sema4D in PDAC are tumor-infiltrating lymphocytes. The overexpression of Sema4D and of its receptor, plexinB1, was found to be significantly correlated with clinical factors, such as lymph node metastasis, distant metastasis, and poor prognosis in patients with PDAC. Through in vitro analysis, we demonstrated that Sema4D can potentiate the invasiveness of pancreatic cancer cells and we identified the downstream molecules. The binding of Sema4D to plexinB1 induced small GTPase Ras homolog gene family, member A activation and resulted in the phosphorylation of MAPK and Akt. In addition, in terms of potential therapeutic application, we clearly demonstrated that the enhanced-cell invasiveness induced by Sema4D could be inhibited by knockdown of plexinB1, suggesting that blockade of plexinB1 might diminish the invasive potential of pancreatic cancer cells. Our findings provide new insight into possible prognostic biomarkers and therapeutic targets in PDAC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app