JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

The heme oxygenase-1 protein is overexpressed in human renal cancer cells following activation of the Ras-Raf-ERK pathway and mediates anti-apoptotic signal.

The stress-inducible cytoprotective enzyme heme oxygenase-1 (HO-1) may play a critical role in the growth and metastasis of tumors. We demonstrated that overexpressed HO-1 promotes the survival of renal cancer cells by inhibiting cellular apoptosis; we also showed that the proto-oncogene H-Ras becomes activated in these cells under stress following treatment with immunosuppressive agents. However, it is not known if there is an association between Ras activation and HO-1 overexpression. Here, we examined if the activation of H-Ras pathway could induce HO-1, and promote the survival of renal cancer cells (786-0 and Caki-1). In co-transfection assays, using HO-1 promoter-luciferase construct, we found that the activated H-Ras, H-Ras(12V), promoted HO-1 transcriptional activation. The inhibition of endogenous H-Ras by specific dominant-negative mutant/siRNA markedly ablated the HO-1 promoter activity. Active H-Ras increased HO-1 mRNA and protein expression. Moreover, transfection with effector domain mutant constructs of active H-Ras showed that H-Ras-induced HO-1 overexpression was primarily mediated through the Raf signaling pathway. Using pharmacological inhibitor, we observed that ERK is a critical intermediary molecule for Ras-Raf-induced HO-1 expression. Activation of H-Ras and ERK promoted nuclear translocation of the transcription factor Nrf2 for its binding to the specific sequence of HO-1 promoter. The knockdown of Nrf2 significantly inhibited H-Ras-induced HO-1 transcription. Finally, by FACS analysis using Annexin-V staining, we demonstrated that the H-Ras-ERK-induced and HO-1-mediated pathway could protect renal cancer cells from apoptosis. Thus, targeting the Ras-Raf-ERK pathway for HO-1 overexpression may serve as novel therapeutics for the treatment of renal cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app