JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vitro and in vivo anti-melanoma action of metformin.

The in vitro and in vivo anti-melanoma effect of antidiabetic drug metformin was investigated using B16 mouse melanoma cell line. Metformin caused a G(2)/M cell cycle arrest associated with apoptotic death of melanoma cells, as confirmed by the flow cytometric analysis of cell cycle/DNA fragmentation, phosphatidylserine exposure and caspase activation. Metformin-mediated apoptosis of melanoma cells was preceded by induction of oxidative stress and mitochondrial membrane depolarization, measured by flow cytometry in cells stained with appropriate fluorescent reporter dyes. The expression of tumor suppressor protein p53 was increased, while the mRNA levels of anti-apoptotic Bcl-2 were reduced by metformin, as revealed by cell-based ELISA and real-time RT-PCR, respectively. Treatment with metformin did not stimulate expression of the cycle blocker p21, indicating that p21 was dispensable for the observed cell cycle arrest. The activation of AMP-activated protein kinase (AMPK) was not required for the anti-melanoma action of metformin, as AMPK inhibitor compound C completely failed to restore viability of metformin-treated B16 cells. Metformin induced autophagy in B16 cells, as demonstrated by flow cytometry-detected increase in intracellular acidification and immunoblot-confirmed upregulation of autophagosome-associated LC3-II. Autophagy inhibitors ammonium chloride and wortmannin partly restored the viability of metformin-treated melanoma cells. Finally, oral administration of metformin led to a significant reduction in tumor size in a B16 mouse melanoma model. These data suggest that anti-melanoma effects of metformin are mediated through p21- and AMPK-independent cell cycle arrest, apoptosis and autophagy associated with p53/Bcl-2 modulation, mitochondrial damage and oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app