JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential.

Microbial metabolites are of huge biotechnological potential and their production can be coupled with detoxification of environmental pollutants and wastewater treatment mediated by the versatile microorganisms. The consortia of cyanobacteria/microalgae and bacteria can be efficient in detoxification of organic and inorganic pollutants, and removal of nutrients from wastewaters, compared to the individual microorganisms. Cyanobacterial/algal photosynthesis provides oxygen, a key electron acceptor to the pollutant-degrading heterotrophic bacteria. In turn, bacteria support photoautotrophic growth of the partners by providing carbon dioxide and other stimulatory means. Competition for resources and cooperation for pollutant abatement between these two guilds of microorganisms will determine the success of consortium engineering while harnessing the biotechnological potential of the partners. Relative to the introduction of gene(s) in a single organism wherein the genes depend on the regulatory- and metabolic network for proper expression, microbial consortium engineering is easier and achievable. The currently available biotechnological tools such as metabolic profiling and functional genomics can aid in the consortium engineering. The present review examines the current status of research on the consortia, and emphasizes the construction of consortia with desired partners to serve a dual mission of pollutant removal and commercial production of microbial metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app