JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fluorofenidone attenuates tubulointerstitial fibrosis by inhibiting TGF-β(1)-induced fibroblast activation.

BACKGROUND: Novel therapeutic agents are urgently needed to combat renal fibrosis. The purpose of this study was to assess, using complete unilateral ureteral obstruction (UUO) in rats, whether fluorofenidone (AKF-PD) [1-(3-fluorophenyl)-5-methyl-2-(1H)-pyridone] inhibits renal fibrosis, and to determine whether it exerts its inhibitory function on renal fibroblast activation.

METHODS: Sprague-Dawley rats were randomly divided into 3 groups: sham operation, UUO and UUO/AKF-PD (500 mg/kg/day). Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of TGF-β(1), collagen III, α-SMA, p-Smad2, p-Smad3, p-ERK1/2, p-JNK and p-p38 were measured. In addition, the expressions of α-SMA, fibronectin, CTGF, p-Smad2/3, p-ERK1/2, p-p38 and p-JNK were measured in TGF-β(1)-stimulated normal rat renal fibroblasts (NRK-49F).

RESULTS: AKF-PD treatment significantly attenuated tubulointerstitium damage, ECM deposition, the expressions of TGF-β(1), collagen III, α-SMA, p-ERK1/2, p-p38 and p-JNK in vivo. In vitro, AKF-PD dose-dependently inhibited expressions of α-SMA, fibronectin and CTGF. Furthermore, AKF-PD did not inhibit Smad2/3 phosphorylation or nuclear accumulation, but rather attenuated ERK, p38 and JNK activation.

CONCLUSION: AKF-PD treatment inhibits the progression of renal interstitial fibrosis in obstructed kidneys; this is potentially achieved by suppressing fibroblast activation. Therefore, AKF-PD is a special candidate for the treatment of renal fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app