JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of chronic, systemic treatment with the dopamine receptor agonist R-apomorphine in partially lesioned rat model of Parkinson's disease: an electrophysiological study of substantia nigra dopamine neurons.

Previous studies have suggested that R-apomorphine (R-APO), a non-selective dopamine (DA) receptor agonist, has neuroprotective effects in the experimental models of Parkinson's disease (PD). In this study, we investigated the effects of chronic, systemic treatment with R-APO in the firing activity of substantia nigra pars compacta (SNc) DA neurons in 6-hydroxydopamine (6-OHDA) partially lesioned rats. In the 6-OHDA-lesioned rats treated with vehicle, injection of 6-OHDA (20.1 microg) into the striatum produced a partial lesion causing 41% loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the SNc. In the partially lesioned rats, chronic, systemic treatment of R-APO (10 mg/kg/day, s.c., 11 days) attenuated loss of TH-ir neurons in the SNc. The partial lesion of the nigrostriatal pathway and R-APO treatment did not change the firing rate and firing pattern of DA neurons in the SNc of rats. In contrast, the R-APO treatment increased the number of spontaneously active DA neurons of the SNc in the partially lesioned rats, while the lesion decreased the number of spontaneously active DA neurons. In addition, the chronic R-APO treatment decreased the responsiveness of the DA neurons to intravenously administrated R-APO in the partially lesioned rats. These results indicate that chronic, systemic R-APO treatment has the neuroprotective effect, and reverses the decrease in the number of spontaneously active DA neurons in the SNc whereas the treatment induces a reduction in the sensitivity of DA receptors in the SNc to R-APO stimulation in this model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app