COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A technical comparison of digital frequency-lowering algorithms available in two current hearing aids.

BACKGROUND: Recently two major manufacturers of hearing aids introduced two distinct frequency-lowering techniques that were designed to compensate in part for the perceptual effects of high-frequency hearing impairments. The Widex "Audibility Extender" is a linear frequency transposition scheme, whereas the Phonak "SoundRecover" scheme employs nonlinear frequency compression. Although these schemes process sound signals in very different ways, studies investigating their use by both adults and children with hearing impairment have reported significant perceptual benefits. However, the modifications that these innovative schemes apply to sound signals have not previously been described or compared in detail.

METHODS: The main aim of the present study was to analyze these schemes'technical performance by measuring outputs from each type of hearing aid with the frequency-lowering functions enabled and disabled. The input signals included sinusoids, flute sounds, and speech material. Spectral analyses were carried out on the output signals produced by the hearing aids in each condition.

CONCLUSIONS: The results of the analyses confirmed that each scheme was effective at lowering certain high-frequency acoustic signals, although both techniques also distorted some signals. Most importantly, the application of either frequency-lowering scheme would be expected to improve the audibility of many sounds having salient high-frequency components. Nevertheless, considerably different perceptual effects would be expected from these schemes, even when each hearing aid is fitted in accordance with the same audiometric configuration of hearing impairment. In general, these findings reinforce the need for appropriate selection and fitting of sound-processing schemes in modern hearing aids to suit the characteristics and preferences of individual listeners.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app