JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms.

Intracellular Ca(2+) is vital for cell physiology. Disruption of Ca(2+) homeostasis contributes to human diseases such as heart failure, neuron-degeneration, and diabetes. To ensure an effective intracellular Ca(2+) dynamics, various Ca(2+) transport proteins localized in different cellular regions have to work in coordination. The central role of mitochondrial Ca(2+) transport mechanisms in responding to physiological Ca(2+) pulses in cytosol is to take up Ca(2+) for regulating energy production and shaping the amplitude and duration of Ca(2+) transients in various micro-domains. Since the discovery that isolated mitochondria can take up large quantities of Ca(2+) approximately 5 decades ago, extensive studies have been focused on the functional characterization and implication of ion channels that dictate Ca(2+) transport across the inner mitochondrial membrane. The mitochondrial Ca(2+) uptake sensitive to non-specific inhibitors ruthenium red and Ru360 has long been considered as the activity of mitochondrial Ca(2+) uniporter (MCU). The general consensus is that MCU is dominantly or exclusively responsible for the mitochondrial Ca(2+) influx. Since multiple Ca(2+) influx mechanisms (e.g. L-, T-, and N-type Ca(2+) channel) have their unique functions in the plasma membrane, it is plausible that mitochondrial inner membrane has more than just MCU to decode complex intracellular Ca(2+) signaling in various cell types. During the last decade, four molecular identities related to mitochondrial Ca(2+) influx mechanisms have been identified. These are mitochondrial ryanodine receptor, mitochondrial uncoupling proteins, LETM1 (Ca(2+)/H(+) exchanger), and MCU and its Ca(2+) sensing regulatory subunit MICU1. Here, we briefly review recent progress in these and other reported mitochondrial Ca(2+) influx pathways and their differences in kinetics, Ca(2+) dependence, and pharmacological characteristics. Their potential physiological and pathological implications are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app