JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hepatic nuclear factor 1alpha (HNF1alpha) dysfunction down-regulates X-box-binding protein 1 (XBP1) and sensitizes beta-cells to endoplasmic reticulum stress.

Correct endoplasmic reticulum (ER) function is critical for the health of secretory cells, such as the pancreatic β-cell, and ER stress is often a contributory factor to β-cell death in type 2 diabetes. We have used an insulin-secreting cell line with inducible expression of dominant negative (DN) HNF1α, a transcription factor vital for correct β-cell development and function, to show that HNF1α is required for Xbp1 transcription and maintenance of the normal ER stress response. DN HNF1α expression sensitizes the β-cell to ER stress by directly down-regulating Xbp1 transcription, whereas Atf6 is unaffected. Furthermore, DN HNF1α alters calcium homeostasis, resulting in elevated cytoplasmic calcium and increased store-operated calcium entry, whereas mitochondrial calcium uptake is normal. Loss of function of XBP1 is toxic to the β-cell and decreases production of the ER chaperone BiP, even in the absence of ER stress. DN HNF1α-induced sensitivity to cyclopiazonic acid can be partially rescued with the chemical chaperone tauroursodeoxycholate. Rat insulin 2 promoter-DN HNF1α mouse islets express lower levels of BiP mRNA, synthesize less insulin, and are sensitized to ER stress relative to matched control mouse islets, suggesting that this mechanism is also operating in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app