JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of increased load on scapular kinematics during manual wheelchair propulsion in individuals with paraplegia and tetraplegia.

Repetitive loading of the upper extremity musculature during activities like wheelchair propulsion can lead to fatigue of surrounding musculature causing irregular segment kinematics. The goal of this study was to determine the effect of increase in load on the kinematics of the scapula in users with paraplegia and tetraplegia. Data were collected on 18 participants (11 with paraplegia and 7 with tetraplegia) using an electromagnetic motion tracking system (100Hz) and force sensing pushrim (200Hz). The participants propelled under no load and loaded conditions at their customary propulsion velocity. On average a 60N increase in force was elicited with the experimental protocol. Users with tetraplegia showed significant increases (p<.05) in the rate of change of scapular angles in the upward/downward rotation and the retraction/protraction direction under the loaded conditions, whereas users with paraplegia only showed difference in the retraction/protraction rotation direction. Overall both user populations moved towards position of increased downward rotation, anterior tilt and protraction with increase in load hence increasing the risk of impingement. This experiment adds depth to our understanding of dynamic scapular kinematics during wheelchair propulsion under different loading conditions and differences in scapular control between users with paraplegia and tetraplegia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app