Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants.

The activated sludge process is an essential process for treating domestic and industrial wastewaters in most wastewater treatment plants (WWTPs). This process consists of a mixture of general and special microorganisms in a form of a complex enrichment population. Thus, the exploration of activated sludge microbial communities is crucial to improve the performance of activated sludge process. In this study, we investigated the phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale WWTPs. Four 16S rRNA gene clone libraries were constructed from activated sludge samples. In all samples, Proteobacteria was the most abundant phylogenetic group, followed by Bacteroidetes and Firmicutes. The dominance of Proteobacteria was further demonstrated by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP). Some specific genera, e.g., Nitrosomonas, Thauera, and Dechloromonas, which significantly correlate with the functions and performance of wastewater treatment, were abundant in all samples. A large number of unclassified sequences were found in the library, suggesting that a wide variety of novel species may inhabit complex activated sludge communities. The structures of the bacterial community did not differ significantly among samples. All samples utilized the vast majority of 31 carbon sources of an EcoPlate (Biolog), suggesting that activated sludge microbial communities possess high metabolic potential and equivalent functions required for wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app