Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis.

BACKGROUND: Pseudoperonospora cubensis, the causal oomycete agent of cucurbit downy mildew, is responsible for enormous crop losses in many species of Cucurbitaceae, particularly in cucumber and melon. Disease control is mainly achieved by combinations of host resistance and fungicide applications. However, since 2004, resistance to downy mildew in cucumber has been overcome by the pathogen, thus driving farmers to rely only on fungicide spray applications, including carboxylic acid amide (CAA) fungicides. Recently, CAA-resistant isolates of P. cubensis were recovered, but the underlying mechanism of resistance was not revealed. The purpose of the present study was to identify the molecular mechanism controlling resistance to CAAs in P. cubensis.

RESULTS: The four CesA (cellulose synthase) genes responsible for cellulose biosynthesis in P. cubensis were characterised. Resistant strains showed a mutation in the CesA3 gene, at position 1105, leading to an amino acid exchange from glycine to valine or tryptophan. Cross-resistance tests with different CAAs indicated that these mutations lead to resistance against all tested CAAs.

CONCLUSION: Point mutations in the CesA3 gene of P. cubensis lead to CAA resistance. Accurate monitoring of these mutations among P. cubensis populations may improve/facilitate adequate recommendation/deployment of fungicides in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app