JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rice G-protein coupled receptor (GPCR): in silico analysis and transcription regulation under abiotic stress.

Majority of transmembrane signal transduction in response to diverse external stimuli is mediated by G-protein coupled receptors (GPCRs) and are the principal signal transducers. GPCRs are characterized by seven membrane-spanning domains with an extracellular N-terminus and a cytoplasmic C-terminus which functions along with GTP-binding protein in a highly coordinated fashion. Role of heterotrimeric G-proteins in abiotic stresses has been reported, but the response of GPCR is not yet well characterized. In the present study we report the isolation of one putative GPCR (966 bp) from Indica rice (Oryza sativa cv. Indica group Swarna) and described its transcriptional regulation under abiotic stresses. Amino acid sequence analyses shows the presence of typical heptahelical transmembrane spanning domains with extracellular N-terminus involved in ligand binding and cytoplasm facing C-terminus that binds with heterotrimeric G-protein. Sequence analysis also confirmed the presence of all signature motifs required for functional GPCR. Domain and site prediction shows the presence of myristoylation sites for membrane association, and protein kinase C sites for its desensitization. The transcript levels of rice GPCR was induced following NaCl and ABA treatments. However, in drought condition the expression profile of GPCR up regulated during early exposure which subsequently decreased. On the other hand it seems no significant effect due to cold and heat stress. These findings provide a direct evidence for transcriptional regulation of rice GPCR under abiotic stress conditions. These findings also suggest that GPCR can be exploited for promoting stress tolerance in plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app