CLINICAL TRIAL, PHASE II
COMPARATIVE STUDY
JOURNAL ARTICLE
MULTICENTER STUDY
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Tamoxifen downregulates ets oncogene family members ETV4 and ETV5 in benign breast tissue: implications for durable risk reduction.

Five years of tamoxifen reduces breast cancer risk by nearly 50% but is associated with significant side effects and toxicities. A better understanding of the direct and indirect effects of tamoxifen in benign breast tissue could elucidate new mechanisms of breast carcinogenesis, suggest novel chemoprevention targets, and provide relevant early response biomarkers for phase II prevention trials. Seventy-three women at increased risk for breast cancer were randomized to tamoxifen (20 mg daily) or placebo for 3 months. Blood and breast tissue samples were collected at baseline and posttreatment. Sixty-nine women completed all study activities (37 tamoxifen and 32 placebo). The selected biomarkers focused on estradiol and IGFs in the blood; DNA methylation and cytology in random periareolar fine-needle aspirates; and tissue morphometry, proliferation, apoptosis, and gene expression (microarray and reverse transcriptase PCR) in the tissue core samples. Tamoxifen downregulated Ets oncogene transcription factor family members ETV4 and ETV5 and reduced breast epithelial cell proliferation independent of CYP2D6 genotypes or effects on estradiol, ESR1, or IGFs. Reduction in proliferation was correlated with downregulation of ETV4 and DNAJC12. Tamoxifen reduced the expression of ETV4- and ETV5-regulated genes implicated in epithelial-stromal interaction and tissue remodeling. Three months of tamoxifen did not affect breast tissue composition, cytologic atypia, preneoplasia, or apoptosis. A plausible mechanism for the chemopreventive effects of tamoxifen is restriction of lobular expansion into stroma through downregulation of ETV4 and ETV5. The human equivalent of murine multipotential progenitor cap cells of terminal end buds may be the primary target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app