Add like
Add dislike
Add to saved papers

α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-α production and lung injury.

BACKGROUND: Mechanical ventilation (MV) induces an inflammatory response that can lead to lung injury. The vagus nerve can limit the inflammatory response through the cholinergic anti-inflammatory pathway. We evaluated the effects of stimulation of the cholinergic anti-inflammatory pathway with the selective partial α7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 on inflammation and lung injury induced by MV using clinically relevant ventilator settings. Furthermore, we investigated whether altering endogenous cholinergic signalling, by administration of the non-specific nAChR antagonist mecamylamine and the peripherally acting acetylcholinesterase inhibitor neostigmine, modulates the MV-induced inflammatory response.

METHODS: C57BL6 mice were injected i.p. with either the selective α7nAChR agonist GTS-21 (8 mg kg(-1)), the acetylcholinesterase inhibitor neostigmine (80 μg kg(-1)), the nAChR antagonist mecamylamine (1 mg kg(-1)), or a placebo; followed by 4 h of MV (8 ml kg(-1), 1.5 cm H(2)O PEEP).

RESULTS: MV resulted in release of cytokines in plasma and lungs compared with unventilated mice. Lung and plasma levels of tumour necrosis factor (TNF)-α, but not of interleukin-10, were lower in GTS-21-treated animals compared with placebo (P<0.05). In addition, GTS-21 lowered the alveolar-arterial gradient, indicating improved lung function (P=0.04). Neither neostigmine nor mecamylamine had an effect on MV-induced inflammation or lung function.

CONCLUSIONS: MV with clinically relevant ventilator settings results in pulmonary and systemic inflammation. Stimulation of the cholinergic anti-inflammatory pathway with GTS-21 attenuates MV-induced release of TNF-α, which was associated with reduced lung injury. Modulation of endogenous cholinergic signalling did not affect the MV-induced inflammatory response. Selective stimulation of the cholinergic anti-inflammatory pathway may represent new treatment options for MV-induced lung injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app