JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lipopolysaccharide-induced mitochondrial DNA depletion.

Hepatic energy depletion has been described in severe sepsis, and lipopolysaccharide (LPS) has been shown to cause mitochondrial DNA (mtDNA) damage. To clarify the mechanisms of LPS-induced mtDNA damage and mitochondrial alterations, we treated wild-type (WT) or transgenic manganese superoxide dismutase-overerexpressing (MnSOD(+++)) mice with a single dose of LPS (5 mg/kg). In WT mice, LPS increased mitochondrial reactive oxygen species formation, hepatic inducible nitric oxide synthase (NOS) mRNA and protein, tumor necrosis factor-alpha, interleukin-1 beta, and high-mobility group protein B1 concentrations. Six to 48 h after LPS administration (5 mg/kg), liver mtDNA levels, respiratory complex I activity, and adenosine triphosphate (ATP) contents were decreased. In addition, LPS increased interferon-β concentration and decreased mitochondrial transcription factor A (Tfam) mRNA, Tfam protein, and mtDNA-encoded mRNAs. Morphological studies showed mild hepatic inflammation. The LPS (5 mg/kg)-induced mtDNA depletion, complex I inactivation, ATP depletion, and alanine aminotransferase increase were prevented in MnSOD(+++) mice or in WT mice cotreated with 1400W (a NOS inhibitor), (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride, monohydrate (a superoxide scavenger) or uric acid (a peroxynitrite scavenger). The MnSOD overexpression delayed death in mice challenged by a higher, lethal dose of LPS (25 mg/kg). In conclusion, LPS administration damages mtDNA and alters mitochondrial function. The protective effects of MnSOD, NOS inhibitors, and superoxide or peroxynitrite scavengers point out a role of the superoxide anion reacting with NO to form mtDNA- and protein-damaging peroxynitrite. In addition to the acute damage caused by reactive species, decreased levels of mitochondrial transcripts contribute to mitochondrial dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app