Association of daily asthma emergency department visits and hospital admissions with ambient air pollutants among the pediatric Medicaid population in Detroit: time-series and time-stratified case-crossover analyses with threshold effects

Shi Li, Stuart Batterman, Elizabeth Wasilevich, Robert Wahl, Julie Wirth, Feng-Chiao Su, Bhramar Mukherjee
Environmental Research 2011, 111 (8): 1137-47

BACKGROUND: Asthma morbidity has been associated with ambient air pollutants in time-series and case-crossover studies. In such study designs, threshold effects of air pollutants on asthma outcomes have been relatively unexplored, which are of potential interest for exploring concentration-response relationships.

METHODS: This study analyzes daily data on the asthma morbidity experienced by the pediatric Medicaid population (ages 2-18 years) of Detroit, Michigan and concentrations of pollutants fine particles (PM2.5), CO, NO2 and SO2 for the 2004-2006 period, using both time-series and case-crossover designs. We use a simple, testable and readily implementable profile likelihood-based approach to estimate threshold parameters in both designs.

RESULTS: Evidence of significant increases in daily acute asthma events was found for SO2 and PM2.5, and a significant threshold effect was estimated for PM2.5 at 13 and 11 μg m(-3) using generalized additive models and conditional logistic regression models, respectively. Stronger effect sizes above the threshold were typically noted compared to standard linear relationship, e.g., in the time series analysis, an interquartile range increase (9.2 μg m(-3)) in PM2.5 (5-day-moving average) had a risk ratio of 1.030 (95% CI: 1.001, 1.061) in the generalized additive models, and 1.066 (95% CI: 1.031, 1.102) in the threshold generalized additive models. The corresponding estimates for the case-crossover design were 1.039 (95% CI: 1.013, 1.066) in the conditional logistic regression, and 1.054 (95% CI: 1.023, 1.086) in the threshold conditional logistic regression.

CONCLUSION: This study indicates that the associations of SO2 and PM2.5 concentrations with asthma emergency department visits and hospitalizations, as well as the estimated PM2.5 threshold were fairly consistent across time-series and case-crossover analyses, and suggests that effect estimates based on linear models (without thresholds) may underestimate the true risk.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"