JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of JNK-AP-1 and ERK-NF-κB signaling in tension-stimulated expression of type I collagen and MMP-1 in human periodontal ligament fibroblasts.

Type I collagen (COL I) and matrix metalloproteinase-1 (MMP-1) are the predominant matrix proteins in the extracellular matrix of the human periodontal ligament (PDL). The expression of these proteins in PDL fibroblasts (PLF) is sensitive to physiological and mechanical stress and is critical for PDL remodeling accompanied by alveolar bone remodeling. This study examined how dose tensile force regulates the expression of COL I and MMP-1 and explored the possible roles of mitogen-activated protein kinases (MAPKs) and transcription factors, such as activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). Tensile force stimulated the mRNA expression of COL I and MMP-1 in the cells and also activated MAPKs including extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK. A pharmacological inhibitor of ERK or JNK prevented the expression of matrix genes and the nuclear translocation of c-Jun proteins in the force-applied PLF. The knockdown of c-Jun by transfecting the cells with its antisense oligonucleotides reduced the force-induced increase in matrix gene expression. In particular, the ERK inhibitor but not JNK or p38 MAPK inhibitor attenuated the force-mediated stimulation of NF-κB-DNA binding and MMP-1 expression. Overall, these results highlight the mechanotransduction pathways involved in matrix gene expression in PLF, where the tension-stimulated expression of COL I and MMP-1 is controlled by the ERK/JNK-AP-1 and ERK-NF-κB signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app