Add like
Add dislike
Add to saved papers

Interaction of supramolecular centers of silica surface with aromatic amino acids.

Surface grafting of β-cyclodextrin onto aminopropylsilica has been carried out under mild conditions using 1,1'-carbonyldiimidazole as an activator. The obtained β-cyclodextrin-silica has been characterized by means of chemical and IR spectral analysis. Adsorption of para-aminobenzoic and para-aminosalicylic acids onto the surface of hydroxylated silica, aminopropylsilica, and silica with chemically attached β-cyclodextrin moieties has been studied in relation to duration of contact, equilibrium concentration, and solution pH. Chemical immobilization of β-cyclodextrin onto silica surface improves adsorption parameters for aromatic amino acids. The well-known mathematical models for the kinetic and equilibrium adsorption processes have been used, and the main adsorption parameters have been calculated. Kinetic curves of aromatic amino acids adsorption correspond to the model of pseudo-second order reaction. The major contribution to the equilibrium adsorption of para-aminobenzoic and para-aminosalicylic acids onto β-cyclodextrin-containing silica is due to the formation of surface inclusion complexes between grafted oligosaccharide molecules and aromatic amino acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app