JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fine tuning of Notch signaling by differential co-repressor recruitment during eye development of Drosophila.

Hereditas 2011 June
Notch signaling is fundamental to the regulation of cellular differentiation, cell growth and cell death in mammals as well as in invertebrates like Drosophila. Upon activation, the Notch receptor is cleaved and the intracellular part ICN assembles an activator complex around Suppressor of Hairless [Su(H)] that activates Notch target genes. Hairless (H) is the major antagonist of the Notch signaling pathway in Drosophila. In the absence of Notch signal, H binds to Su(H) and recruits two general co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP); this repression complex downregulates Notch target genes. Previously we have shown that Gro and CtBP are recruited simultaneously to H and that they act in concert during wing and embryonic development. However, Gro and CtBP are utilized context-dependently by other transcription factors. Hence differential co-repressor recruitment by the Su(H)-H repressor complex is likewise conceivable. Here, we investigated the requirement for the co-repressors Gro and CtBP in H mediated Notch repression during several phases of eye development. Whereas both co-repressors appear likewise important during the specification of photoreceptor cells, we find differential requirement for the regulation of proliferation and cell death, respectively. During the early proliferative phase, H preferentially recruits Gro to inhibit Notch mediated growth of the eye disc. Elimination of superfluous interommatidial pigment cells, which depends on a late Notch signal, is antagonized by H and predominantly CtBP. In summary, differential recruitment of the co-repressors Gro and CtBP by H in a context-dependent manner ensures fine tuning of Notch signaling activity during eye development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app