Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells.

Diabetologia 2011 September
AIMS/HYPOTHESIS: The generation of induced pluripotent stem cells (iPSCs) provides a promising possibility for type 1 diabetes therapy. However, the generation of insulin-producing cells from iPSCs and evaluation of their efficacy and safety should be achieved in large animals before clinically applying iPSC-derived cells in humans. Here we try to generate insulin-producing cells from rhesus monkey (RM) iPSCs.

METHODS: Based on the knowledge of embryonic pancreatic development, we developed a four-stage protocol to generate insulin-producing cells from RM iPSCs. We established a quantitative method using flow cytometry to analyse the differentiation efficiency. In addition, to evaluate the differentiation competence and function of RM iPSC-derived cells, transplantation of stage 3 and 4 cells into immunodeficient mice was performed.

RESULTS: RM iPSCs were sequentially induced to definitive endoderm (DE), pancreatic progenitors (PP), endocrine precursors (EP) and insulin-producing cells. PDX1(+) PP cells were obtained efficiently from RM iPSCs (over 85% efficiency). The TGF-β inhibitor SB431542 promoted the generation of NGN3(+) EP cells, which can generate insulin-producing cells in vivo upon transplantation. Finally, after this four-stage differentiation in vitro, insulin-producing cells that could secrete insulin in response to glucose stimulation were obtained. When transplanted into mouse models for diabetes, these insulin-producing cells could decrease blood glucose levels in approximately 50% of the mice.

CONCLUSIONS/INTERPRETATION: We demonstrate for the first time that RM iPSCs can be differentiated into functional insulin-producing cells, which will provide the basis for investigating the efficacy and safety of autologous iPSC-derived insulin-producing cells in a rhesus monkey model for type 1 diabetes therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app