JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of ketoconazole as an AhR-Nrf2 activator in cultured human keratinocytes: the basis of its anti-inflammatory effect.

Ketoconazole (KCZ) has been shown to exhibit anti-inflammatory effects in addition to its inhibitory effects against fungi; however, the underlying molecular mechanism remains poorly understood. Aryl hydrocarbon receptor (AhR), a receptor that is activated by polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons such as dioxin, is a sensor of the redox system against oxidative stress and regulates nuclear factor-erythroid 2-related factor-2 (Nrf2), a master switch of the redox machinery. To clarify whether KCZ modulates AhR-Nrf2 function leading to redox system activation, cultured human keratinocytes were treated with KCZ. Confocal microscopic analysis revealed that KCZ induced AhR nuclear translocation, resulting in the upregulation of CYP1A1 mRNA and protein expression. Furthermore, KCZ actively switched on Nrf2 nuclear translocation and quinone oxidoreductase 1 expression. Tumor necrosis factor-α- and benzo(a)pyrene (BaP)-induced reactive oxidative species (ROS) and IL-8 production were effectively inhibited by KCZ. Knockdown of either AhR or Nrf2 abolished the inhibitory capacity of KCZ on ROS and IL-8 production. In addition, KCZ-induced Nrf2 activation was canceled by AhR knockdown. Moreover, KCZ inhibited BaP-induced 8-hydroxydeoxyguanosine and IL-8 production. In conclusion, the engagement of AhR by KCZ exhibits the cytoprotective effect mediated by the Nrf2 redox system, which potently downregulates either cytokine-induced (AhR-independent) or PAH-induced (AhR-dependent) oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app