JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interactions of 1-butyl-3-methylimidazolium carboxylate ionic liquids with glucose in water: a study of volumetric properties, viscosity, conductivity and NMR.

Extensive applications of ionic liquids (ILs) may result in their accumulation in the ecological environment and organisms. Although ILs are popularly called "green solvents", their toxicity, in fact, has been exhibited. Therefore the interaction of ILs with biomolecules is a cutting-edge research subject. Herein, the interactions of 1-butyl-3-methylimidazolium carboxylate ionic liquids ([C(4)mim][HCOO], [C(4)mim][CH(3)COO] and [C(4)mim][CH(3)CH(2)COO]) with glucose in water were studied for their volumetric properties, viscosity, conductivity and NMR spectra. Limiting apparent molar volumes (V(Φ, IL)(0)), viscosity B-coefficients, limiting molar conductivities (Λ(0)) and Walden products (Λ(0)η(0)) were evaluated for the ILs in glucose + water solutions. Volumetric interaction parameters were also obtained from the transfer volumes of the ionic liquids. The contributions of the solvent properties (B(1)) and the ionic liquid-solvent interactions (B(2)) to the B-coefficient were extracted, together with molar activation energies (Δμ(IL)(0≠)) of the ionic liquids for viscous flow of the aqueous glucose + IL solution. In addition, the (13)C and (1)H NMR spectra of methyl β-D-glucopyranoside and ILs in β-D-glucopyranoside + IL + D(2)O were studied. The NMR results show that no special and strong interactions were observed between glucopyranoside and the ILs. However, it was confirmed that the H2 on the imidazolium ring has more activity (acidity) than atoms H4 and H5. The macro-properties and their changes were also discussed in terms of the size, structure and solvation of the ILs and glucose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app